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For some competitive Kolmorogov systems, there is an invariant Lipschitz manifold called
the carrying simplex which is an attractor in the positive orthant; in fact, all trajectories
are asymptotic to one on this manifold [2]. Many other properties of the carrying simplex
have been proven such as how its convexity affects the behaviour of the system [1, 3]. This
carrying simplex exists in types of competitive Lotka-Volterra population models where it
is the boundary of the basin of repulsion of the origin and contains all non-trivial limit
sets. Our work explores non-competitive deterministic systems, investigating whether this
manifold exists and which properties still hold. We also find an analytic formula for the
carrying simplex in the two species case.
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We give a derivation, in terms of mechanisms at the individual level, of a functional response
involving the ability for the handling predator to resume searching spontaneously or after the
interaction with the living prey. This ecological setting results in a prey-density dependent
handling time. Here the conversion coefficient of prey into predators is given as a function
of the prey density. We consider the resulting two ordinary differential equations system
and study the model at the population level, by the comparison with the dynamics of the
well-known Gause model. Using the theory of adaptive dynamics, we analyse the Darwinian
evolution of the functional response.
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Increasing the understanding of how some populations group together can be useful in many
areas, including the study of invasive species, conservation and pest monitoring and control.
Using individual based modelling we have simulated the formation of clusters in a population
of invertebrate species, clusters being defined as patches of the high population density,
along a one-dimensional domain. We model the animal movement by a random walk, where
the spatial step size at each time interval is generated from a selected probability density
function. Also introduced to the model is a density dependent directional bias so that an
individual is more likely to move in the direction of higher densities of its fellows.

We will present the results from the simulations when the normal distribution and a power
law distribution have been used to generate animal movement. It will be discussed how the
frequency and stability of the clusters are related to the choice of parameters in the model
(e.g. the strength of density dependence). One important result emerging in the model is
the feature of dynamic clusters where the number of clusters fluctuates as time progresses.
It will be argued in the talk that the existence of dynamic clusters is entirely defined by the
properties of the probability density function as the dynamic clustering behaviour disappears
when a power law probability density function is changed to the normal distribution.
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Kinesis is the non-directional movement as a response to the changing conditions. We
suggested a model of purposeful kinesis with the diffusion coefficient directly dependent
on the reproduction coefficient. This model is a straightforward formalisation of the rule:
“Let well enough alone”. The well-being is measured by local and instant values of the
reproduction coefficient. The kinesis strategy depends on well-being: Animals stay longer
in good conditions and leave quicker bad conditions. If the well-being is measured by the
instant and local reproduction coefficient then the minimal model of kinesis can be written
as follows:

Ou;i(x,t) = DoV (e*ai”(““”’“k’s)VUi) + (U, .o uk, S)u, (1)

where: wu; is the population density of ith species, s represents the abiotic characteristics
of the living conditions (can be multidimensional), r; is the reproduction coefficient, which
depends on all u; and on s, Dy > 0 is the equilibrium diffusion coefficient (defined for
r; = 0), the coefficient «; > 0 characterises dependence of the diffusion coefficient on the
reproduction coefficient. Equations (1) describe dynamics of the population densities for
arbitrary dynamics of s. For the complete model the equations for environment s should
be added. The space distribution strategy is summarised in the diffusion coefficient D; =
Dy;e " which depends only on the local in space and time value of the reproduction
coefficient. Diffusion depends on well-being measured by this coefficient. This is the kinesis
constant a,;. It can be defined as

a; = —
Dy, dr;

r;=0

In the first approximation, D; = Dg;(1 — a;r;). This model (1) can be considered as the
manimal model of purposeful kinesis. We have used the instant and local reproduction
coefficient r for defining of purposeful kinesis. The analysis of several benchmark situations
demonstrates that, indeed, sometimes this formalisation works well. If the food exists in
low-level uniform background concentration and in rare (both in space and time) sporadic
patches then purposeful kinesis defined by the instant and local reproduction coefficient (1)



is evolutionarily beneficial and allows animals to utilise the food patches more intensively.
If there are periodic (or almost periodic) fluctuations in space and time of the food density
s then purposeful kinesis defined by the instant and local reproduction coefficient (1) is
evolutionarily beneficial and allows animals to utilize these fluctuations more efficiently. If
the reproduction coefficient r(u, s) is not a monotonically decreasing function of u for every
given s (the Allee effect) then the “Let well enough alone” strategy may delay the spreading
of population. This strategy can lead to the failure in the evolutionary game when the
colonization of new territories is an important part of evolutionary success. At the same
time, the “Let well enough alone” strategy can prevent the effects of extinction caused by
too fast diffusion and, thus, decrease the effect of harmful diffusion [1]. Moreover, we are
studying on impact of the purposeful kinesis on running waves. The population with Allee
effect also has the travelling wave behaviour with kinesis. We analize the travelling distance
in time and how the velocity changes with «.
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Many populations, e.g. of cells, bacteria, viruses, or replicating DNA molecules, but also
of species invading a habitat, or physical systems of elements generating new elements,
will be observable only when their number is large, say a proportion of the environmental
carrying capacity K or some corresponding regulating or system scale unit. If start is from
a small (as compared to K) number Zj of individuals, not hampering each other while few,
the population will, initially, grow in a branching process like, roughly exponential fashion,
Z, ~ m'W, where Z, is the size at discrete time ¢, m is the offspring mean per individual
(during the initial stage), and W a sum of Z; i.i.d. random variables. It will, thus, become
detectable (i.e. of the same order as K) only after around log K generations, when its
density X; := Z;/K will tend to be of the order of a strictly positive random variable,
dependent upon the starting number Z,, but typically not in a one-to-one fashion.

In this work, we make these arguments precise, studying general population-size and also
system-size dependent processes in discrete time, as K — oo, where population size is
normed by K, which may also be the time unit. The fundamental idea is coupling the
initial system to a branching process.

Due to early fluctuations before population size comes anywhere close to carrying capacity,
the first feasible population size observations, thus, may or may not allow precise determi-
nation of the initial number Z,. This can be viewed as a very general phenomenon, the
randomness of a system being relegated to its start, as it were, when the system becomes
large and its scale as well as the time scale are properly adjusted. The early variabiliy
expresses itself as a veil of uncertainty conceiling the process intiation.

The important concrete special case of finding the copy number at start of quantitative
PCR under Michaelis-Menten kinetics was pursued in [1]. After mentioning the correspond-
ing case of binary splitting, as a simple showcase model for tumour growth or bacterial
populations in situations where the population size and carrying capacity influence repro-
duction, we go on to general, discrete time, Markov, population (or number of elements)
and carrying-capacity dependent branching processes.
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